

## Umbruch in der Produktion von Teilen

\_

#### Chancen und Risiken



#### Inhalt

- Allgemeine Darstellung
- Einteilung der Prototypen
- Erhöhung der Funktionalität
- Magnetic Resonance Tomography (MRT)
- Zugversuch zur Untersuchung der Materialeigenschaften
- Konventionelle und integrierte Zugvorrichtungen
- Chancen und Risiken



 In der Geschichte der Menschheit hat es zu jeder Zeit Wandel und Wechsel in der Herstellung von Teilen gegeben.

"Das Bessere ist der Feind des Guten." (Voltaire)

- z.B. PKW
  - Stoßstange / Armaturenbrett



University of Applied Sciences FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN





Dietmar Glatz

4

08.09.2011

5. Rapid Prototyping Forum

HOME
HOCHSCHULE
MERSEBURG\*\*

University of Applied Sciences FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN



08.09.2011

5. Rapid Prototyping Forum

Dietmar Glatz



- Im technischen Prototypenbau unterscheidet man je nach Detaillierungsgrad zwischen:
- Designprototyp
  - Konzeptmodell zur Überprüfung ästhetischer und ergonomischer Merkmale
- Geometrischer Prototyp
  - Maßgenaues Modell für erste Montage- und Gebrauchsversuche und zur Konkretisierung des (Material-)Anforderungsprofils
- Funktionsprototyp
  - Prototyp, der bereits entscheidende funktionale Eigenschaften eines später in Serie gefertigten Bauteils aufweist
- Technischer Prototyp
  - Mit dem Endprodukt weitgehend identisches Versuchsmodell

Quelle: Elvira Moeller, Handbuch Konstruktionswerkstoffe, Hanser Verlag, 2007, ISBN 3446401709, S. 134 f.

Dietmar Glatz

08.09.2011

5. Rapid Prototyping Forum



 Erhöhung der Funktionalität durch die Integration von Bauteilen

- Vorteile:
  - keine Montage
  - weniger Fehler



#### • Funktionalität I



08.09.2011 5. Rapid Prototyping Forum

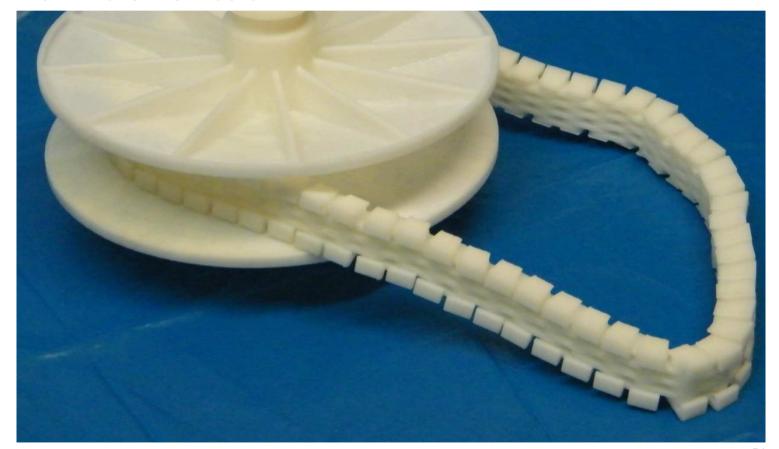
Dietmar Glatz



#### • Funktionalität II



08.09.2011


5. Rapid Prototyping Forum

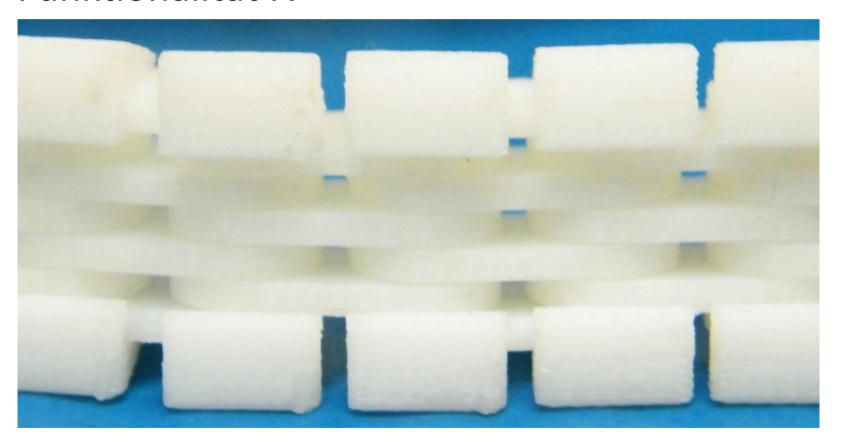
Dietmar Glatz



University of Applied Sciences FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

#### • Funktionalität III




08.09.2011

5. Rapid Prototyping Forum

Dietmar Glatz

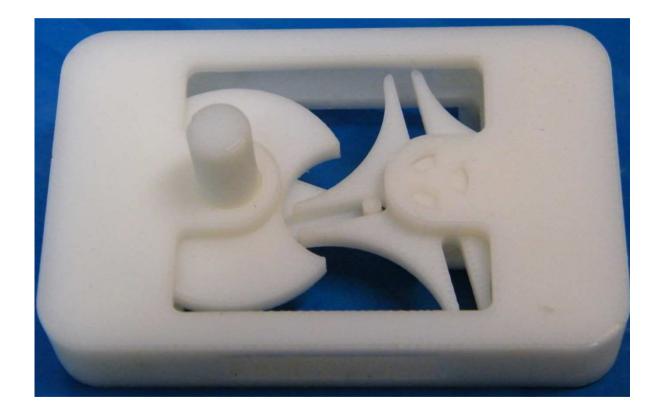


#### • Funktionalität IV



08.09.2011

5. Rapid Prototyping Forum


Dietmar Glatz



Applied Sciences

FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

• Funktionalität V



Dietmar Glatz

12

08.09.2011

5. Rapid Prototyping Forum



#### • Funktionalität VI



Dietmar Glatz

HOME
HOCHSCHULE
MERSEBURGFH

University of Applied Sciences

FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

- Funktionalität VII
  - hart/weichKombinationen



Dietmar Glatz



• Funktionalität VIII



2011 Hochschule Merseburg (FH) www.hs-merseburg.d

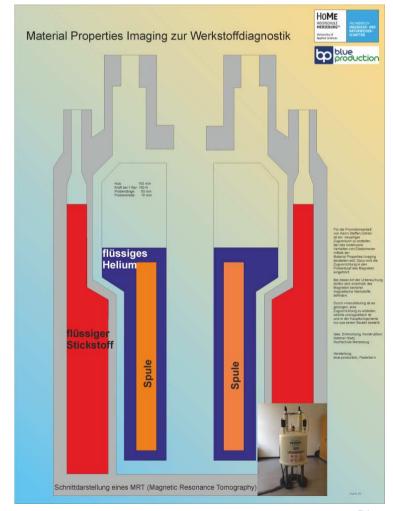


MRT (Magnetic Resonance Tomography)

Die Magnetresonanztomographie basiert auf sehr starken Magnetfeldern sowie elektromagnetischen Wechselfeldern im Radiofrequenzbereich, mit denen bestimmte Atomkerne (meistens die Wasserstoffkerne/Protonen) im Körper resonant angeregt werden, die dann im Empfängerstromkreis elektrische Signale induzieren.



#### • MRT


- Schnittbilddarstellung meist in der menschlichen Diagnostik
- MRT wird aber auch zur
   Untersuchung von Werkstoffen und Materialien eingesetzt



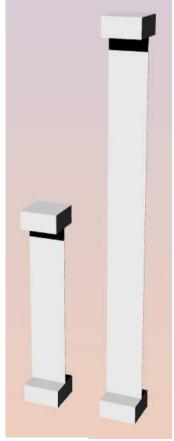
Dietmar Glatz



 Schnittdarstellung eines MRT-Gerätes



Dietmar Glatz

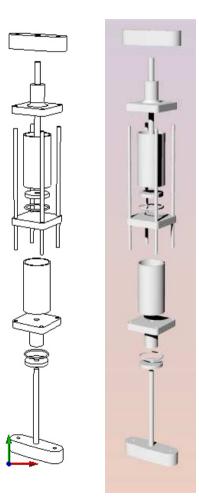

08.09.2011 5. Rapid Prototyping Forum



Zugversuch zur Untersuchung der

Materialeigenschaften

Auf ein Materialprobe wird eine Zugkraft aufgebracht und das spezifische Materialverhalten beobachtet.






- Randbedingungen
  - keine metallischen Teile, da diese
    - vom Magneten angezogen werden können
    - das Signal der Radiowellen stören
  - keine hydraulischen Mechanismen
    - Leckgefahr
    - hoher apparativer Aufwand
- Lösung: Pneumatik



- Zugvorrichtung konventionell
  - 18 Einzelteile
  - Aus Halbzeugen gefertigt
  - Hoher Montageaufwand
  - Hohe Fehlerquelle durch
    - Produktion
    - Montage

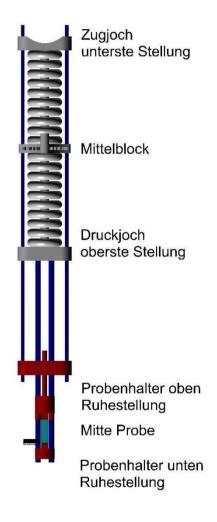


Dietmar Glatz

08.09.2011

5. Rapid Prototyping Forum

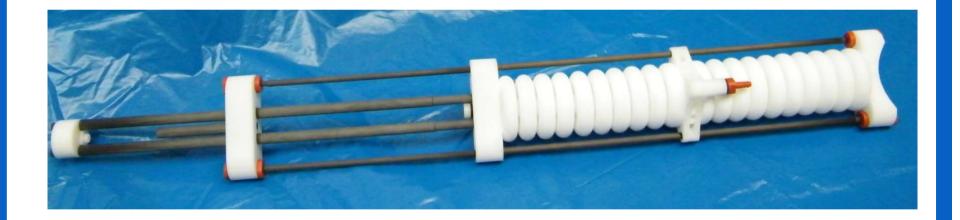



Zugvorrichtung integriert

• Gesamtlänge: 625 mm

Probenlänge: 50 mm

• Kraft bei 1 bar: 150 N


Messweg: 120 mm

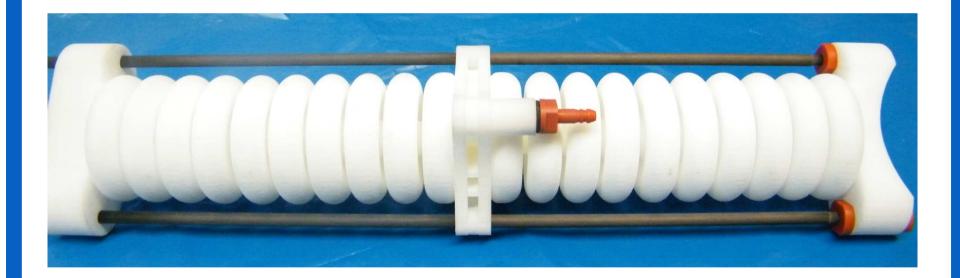


Dietmar Glatz



• Integrierte Lösung




Dietmar Glatz

5. Rapid Prototyping Forum

08.09.2011



#### Detail I



Dietmar Glatz

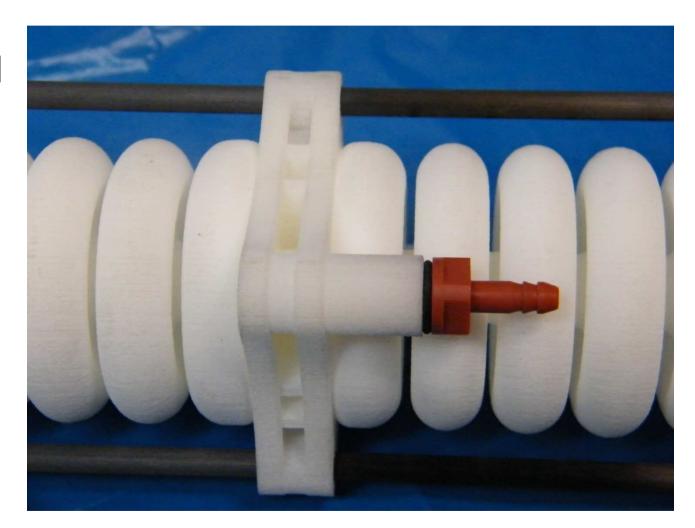
HOME
HOCHSCHULE
MERSEBURGFH

University of Applied Sciences FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

• Detail II



08.09.2011


5. Rapid Prototyping Forum

Dietmar Glatz

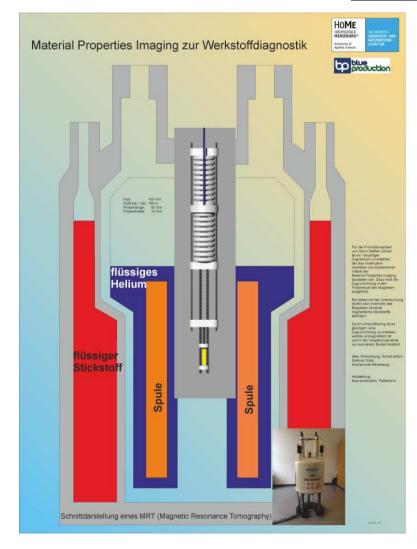
HOME
HOCHSCHULE
MERSEBURGFH

University of Applied Sciences FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

Detail III



Dietmar Glatz


26

08.09.2011

5. Rapid Prototyping Forum



 Zugvorrichtung in Einbaulage



Dietmar Glatz

27

08.09.2011

HOME
HOCHSCHULE
MERSEBURGFH

University of SCH Applied Sciences

FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

• Film



08.09.2011

5. Rapid Prototyping Forum

Dietmar Glatz



#### Chancen

- Keine Hinterschnitte
- Keine Werkzeuge und Auswerfer
- Geometrie leicht anpassbar (Datensatz)

#### Risiken

- Materialdaten und -vielfalt
- Prozesssicherheit
- Mikro- und Makrolunker
- Festigkeit in Z



# Ich danke für Ihre Aufmerksamkeit!

Dietmar Glatz Hochschule Merseburg